A Finite Element Analysis Approach to Explain Sensitivity Degradation in Force Sensing Resistors Based on Conductive Polymer Composites

Author:

Matute Arnaldo1ORCID,Paredes-Madrid Leonel2ORCID,Altuve David3ORCID,Palacio Carlos A.4ORCID

Affiliation:

1. CIYT Group. Faculty of Engineering and Basic Science, Juan De Castellanos University Foundation, Tunja 150001, Colombia

2. Faculty of Mechanics, Electronic and Biomedical Engineering, Universidad Antonio Nariño, Tunja 150001, Colombia

3. Mechatronics Group, Simón Bolívar University, Caracas 1080, Venezuela

4. GIFAM Group, Faculty of Sciences, Universidad Antonio Nariño, Tunja 150001, Colombia

Abstract

Force sensing resistors (FSR) based in conductive polymer composites (CPC) are a cost-effective alternative to load cells for force measurement. Nevertheless, their physical characteristics related to rheological features provoke some drawbacks such as hysteresis, drift, low repeatability, and sensitivity degradation (SD), which is a concerning issue when final application involves periodic loading. Although it is already known that SD is a voltage-related phenomenon and practical considerations to avoid it have been published, a more theoretical approach was yet missing. This study provides a set of finite element analysis (FEA) simplified models to shed light on the situations that favor degradation based in a time-dependent mechanical study considering rheological parameters and how they influence interparticle tunneling conduction. Also, a stationary electrostatic analysis with special scope in contact resistance and its influence in equipotential surfaces arousal. Simulation results show how the effect of contact resistance bends equipotential surfaces favoring conduction through time-increasing interparticle gaps, which is a direct consequence of the low Poisson ratio of considered polymers.

Funder

Juan De Castellanos University Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3