Space-Time Evolution of Subway Vulnerability Based on Hypergraph Space

Author:

Lu Kaihua12ORCID,Gu Xiaoyan3ORCID

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China

2. Nanjing Public Engineering Construction Center, Nanjing 210000, China

3. Jinling Institute of Technology, Nanjing 210000, China

Abstract

How to qualitatively and quantitatively evaluate the ability of the whole subway system to maintain the maximum normal operation has become a noteworthy topic. In this study, the hypergraph space structure of Nanjing subway network is used for research. This study uses the method of time-space evolution mechanism to dynamically and quantitatively analyze the gradual change characteristics of Nanjing subway system vulnerability under the influence of time and space. In addition, this study also makes static and dynamic comparative analysis on the vulnerability of a subway system by using connectivity rate and trip efficiency index, which provides new analysis methods and ideas for the study of a subway system network. The results show that although the overall structure of Nanjing’s subway network shows a loose trend, as Nanjing’s subway is still in a rapid development stage, it can be seen from the long-term planning of Nanjing’s subway that the construction of Nanjing’s subway ring line will be strengthened after the completion of the connection between the main city and the suburbs. Therefore, the vulnerability of the subway system should be reduced and the reliability will be improved.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Foundation Pit Design of Metro Station in Complex Environment;Advances in Materials Science and Engineering;2021-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3