Fast Query-by-Singing/Humming System That Combines Linear Scaling and Quantized Dynamic Time Warping Algorithm

Author:

Nam Gi Pyo1ORCID,Park Kang Ryoung2ORCID

Affiliation:

1. Department of Electronics Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Republic of Korea

2. Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Republic of Korea

Abstract

We newly propose a query-by-singing/humming (QbSH) system considering both the preclassification and multiple classifier-based method by combining linear scaling (LS) and quantized dynamic time warping (QDTW) algorithm in order to enhance both the matching accuracy and processing speed. This is appropriate for the QbSH of high speed in the huge distributed server environment. This research is novel in the following three ways. First, the processing speed of the QDTW is generally much slower than the LS method. So, we perform the QDTW matching only in case that the matching distance by LS algorithm is smaller than predetermined threshold, by which the entire processing time is reduced while the matching accuracy is maintained. Second, we use the different measurement method of matching distance in LS algorithm by considering the characteristics of reference database. Third, we combine the calculated distances of LS and QDTW algorithms based on score level fusion in order to enhance the matching accuracy. The experimental results with the 2009 MIR-QbSH corpus and the AFA MIDI 100 databases showed that the proposed method reduced the total searching time of reference data while obtaining the higher accuracy compared to the QDTW.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3