Affiliation:
1. APEC Climate Center, 12 Centum 7-ro, Haeundae-gu, Busan 612-020, Republic of Korea
2. School of Agriculture and Natural Science, University of Maryland, College Park, MD 20742, USA
Abstract
Precipitation is the main factor that drives hydrologic modeling; therefore, missing precipitation data can cause malfunctions in hydrologic modeling. Although interpolation of missing precipitation data is recognized as an important research topic, only a few methods follow a regression approach. In this study, daily precipitation data were interpolated using five different kernel functions, namely, Epanechnikov, Quartic, Triweight, Tricube, and Cosine, to estimate missing precipitation data. This study also presents an assessment that compares estimation of missing precipitation data throughKth nearest neighborhood (KNN) regression to the five different kernel estimations and their performance in simulating streamflow using the Soil Water Assessment Tool (SWAT) hydrologic model. The results show that the kernel approaches provide higher quality interpolation of precipitation data compared with theKNN regression approach, in terms of both statistical data assessment and hydrologic modeling performance.
Subject
Atmospheric Science,Pollution,Geophysics
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献