Cytokine Regulation from Human Peripheral Blood Leukocytes Cultured In Vitro with Silver Doped Bioactive Glasses Microparticles

Author:

Lima Jefferson Muniz de1ORCID,Pinheiro Ferreira Edlainne1ORCID,Bonan Roberta Ferreti1ORCID,Silva-Teixeira David Nascimento2,Goulart Luiz Ricardo34ORCID,Souza Joelma Rodrigues de15,de Medeiros Eliton Souto6,Bonan Paulo Rogério Ferreti1ORCID,Castellano Lúcio Roberto Cançado1ORCID

Affiliation:

1. Human Immunology Research and Education Group-GEPIH, Escola Técnica de Saúde da UFPB, Universidade Federal da Paraíba, João Pessoa, Brazil

2. Institute of Health Sciences, Department of Clinical Medicine, Universidade Federal do Triângulo Mineiro Federal, Uberaba, Brazil

3. Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Universidade Federal de Uberlandia, Uberlandia, Brazil

4. Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA

5. Department of Physiology and Pathology, Universidade Federal da Paraíba, João Pessoa, Brazil

6. Materials and Biosystems Laboratory, Universidade Federal da Paraíba, João Pessoa, Brazil

Abstract

Bioactive glasses (BG) applications include tissue engineering for bone regeneration, coating for implants, and scaffolds for wound healing. BG can be conjugated to ions like silver, which might add some antimicrobial properties to this biomaterial. The immunomodulatory activity of ion-doped bioactive glasses particles was not investigated before. The aim of this work was to evaluate the cytotoxic and immunomodulatory effect of BG and silver-doped bioactive glass (BGAg) in human peripheral blood cells. BG and BGAg samples belonging to the system 58SiO2(36-x)CaO·6P2O5·xAg2O, where x = 0 and 1 mol%, respectively, were synthesized via sol–gel method and characterized. Cytotoxicity, modulation of cytokine production (TNF-α, IL-1β, IL-6, IL-4, and IL-10), and oxidative stress response were investigated in human polymorphonuclear cells (PMNs) and peripheral blood mononuclear cells (PBMCs) cultures. Cell viability in the presence of BG or BGAg was concentration-dependent. In addition, BGAg presented higher PBMCs toxicity (LC50 = 0.005%) when compared to BG (LC50 = 0.106%). Interestingly, interleukin4 was produced by PBMCs in response to BG and BGAg in absence of phytohemagglutinin (PHA) and did not modulate PHA-induced cytokine levels. Subtoxic concentrations (0.031% for BG and 0.0008% for BGAg) did not change other cytokines in PBMCs nor reactive oxygen species (ROS) production by PMN. However, BG and BGAg particles decreased zymosan-induced ROS levels in PMN. Although ion incorporation increased BG cytotoxicity, the bioactive glass particles demonstrated a in vitro anti-inflammatory potencial. Future studies are needed to clarify the scavenger potential of the BG/BGAg particles/scaffolds as well as elucidate the effect of the anti-inflammatory potential in modulating tissue growth in vivo.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3