Vision Navigator: A Smart and Intelligent Obstacle Recognition Model for Visually Impaired Users

Author:

Suman Shubham1,Mishra Sushruta1ORCID,Sahoo Kshira Sagar2ORCID,Nayyar Anand3ORCID

Affiliation:

1. School of Computer Engineering, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, India

2. Department of Computer Science and Engineering, SRM University, Amravati, Andhra Pradesh, India

3. Graduate School, Faculty of Information Technology, Duy Tan University, Da Nang, India

Abstract

Vision impairment is a major challenge faced by humanity on a large scale throughout the world. Affected people find independently navigating and detecting obstacles extremely tedious. Thus, a potential solution for accurately detecting obstacles requires an integrated deployment of the Internet of Things and predictive analytics. This research introduces “Vision Navigator,” a novel framework for assisting visually impaired users in obstacle analysis and tracking so that they can move independently. An intelligent stick named “Smart-fold Cane” and sensor-equipped shoes called “Smart-alert Walker” are the main constituents of our proposed model. For object detection and classification, the stick uses a single-shot detection (SSD) mechanism, which is followed by frame generation using the recurrent neural network (RNN) model. Smart-alert Walker is a lightweight shoe that acts as an emergency unit that notifies the user regarding the presence of any obstacle within a short distance range. This intelligent obstacle detection model using the SSD-RNN approach was deployed in real time and its performance was validated in indoor and outdoor environments. The SSD-RNN model computed an optimum accuracy of 95.06% and 87.68% indoors and outdoors, respectively. The model was also evaluated in the context of users’ distance from obstacles. The proposed SSD-RNN model had an accuracy rate of 96.4% and 86.8% for close and distant obstacles, respectively, outperforming other models. Execution time for the SSD-RNN model was 4.82 s with the highest mean accuracy rate of 95.54% considering all common obstacles.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference47 articles.

1. Global trends in the magnitude of blindness and visual impairment,2020

2. Blindness and vision impairment;WHO,2020

3. Neural Correlates of Natural Human Echolocation in Early and Late Blind Echolocation Experts

4. Enabling accessible shopping for visually impaired people through mobile technologies;D. López-De-Ipiña

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3