Analysis of a Family with Brugada Syndrome and Sudden Cardiac Death Caused by a Novel Mutation of SCN5A

Author:

Zhu Yao-Bin1ORCID,Zhang Jian-Hui2ORCID,Ji Yuan-Yuan2ORCID,Hu Ya-Nan2ORCID,Wang Han-Lu2ORCID,Ruan Dan-Dan2ORCID,Meng Xiao-Rong23ORCID,Lin Xin-Fu23ORCID,Luo Jie-Wei23ORCID,Chen Wei23ORCID

Affiliation:

1. Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, China

2. Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China

3. Fujian Provincial Hospital, Fuzhou 350001, China

Abstract

Background. Brugada syndrome is a hereditary cardiac disease associated with mutations in ion channel genes. The clinical features include ventricular fibrillation, syncope, and sudden cardiac death. A family with Brugada syndrome with sudden cardiac death was analyzed to locate the associated mutation in the SCN5A gene. Methods and Results. Three generations of a Han Chinese family with Brugada syndrome were recruited in the study; their clinical phenotype data were collected and DNA samples extracted from the peripheral blood. Next-generation sequencing was carried out in the proband, and candidate genes and mutations were screened using the full exon capture technique. The family members who participated in the survey were tested for possible mutations using Sanger sequencing. Six family members were diagnosed with Brugada syndrome, including four asymptomatic patients. A newly discovered heterozygous mutation in the proband was located in exon 25 of SCN5A (NM_000335.5) at c.4313dup(p.Trp1439ValfsTer32). Among the surviving family members, only those with a Brugada wave on their electrocardiogram carried the c.4313dup(p.Trp1439ValfsTer32) variant. Bioinformatics prediction revealed that the frameshift of the c.4313dup (p.Trp1439ValfsTer32) mutant led to a coding change of 32 amino acids, followed by a stop codon, resulting in a truncated protein product. Conclusion. The newly discovered mutation site c.4313dup(p.Trp1439ValfsTer32) in exon 25 of SCN5A may be the molecular genetic basis of the family with Brugada syndrome.

Funder

Fujian University of Traditional Chinese Medicine

Publisher

Hindawi Limited

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3