Affiliation:
1. North China University of Science and Technology, Hebei Mining Key Laboratory of Development and Safety Technology, Tangshan, Hebei 063000, China
Abstract
The stability of iron tailings dam is affected by the permeability of tailings. Considering the influence of it, it is necessary to analyze the permeability of tailings so as to prevent the recurrence of Brazilian iron tailings dam accidents. Nevertheless, the results of iron tailings permeability from some prediction equations (Terzaghi equation, Hazen equation, and Kozeny equation) cannot be accurate. Iron tailings are various as they can be divided into three categories: (1) silt content is less than 40%; (2) silt content is more than 40%, while clay content is less than 15%; and (3) clay content is more than 15% and less than 30%. Correspondingly, three equations are proposed to calculate the disturbed and iron undisturbed tailings permeability for the three types. And more accurate results come from it. The water-flow paths of the iron tailings are blocked after compaction, and the critical pressure of iron tailings blockage is 200 kPa. Although the porosity is large, some of the pores are isolated from each other when the pressure is larger than 200 kPa. However, porosity becomes too large for permeability calculation after compaction and the calculated permeability gets larger as well (equations (24)–(26)). Correcting the permeability calculation equations is an absolute must. The calculated permeability by the revised equations becomes more accurate (equations (27)–(29)). In fact, the granulometric characteristics necessarily play a vital role in the evolution of the pore interconnections by blocking the water-flow paths and modifying the morphological parameters. More research studies are required to be done in the future.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献