Affiliation:
1. School of Technology, Beijing Forestry University, Beijing 100083, China
2. Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Municipal Education Commission, Beijing 100083, China
3. Key Lab of State Forestry Administration for Forestry Equipment and Automation, Beijing 100083, China
Abstract
Stem water content (StWC = volume of water : volume of stem) is an important physiological parameter for vascular plants. And a better understanding of StWC contributes to solving some research hotspots in forestry, such as drought resistance, cold resistance, precise irrigation, and health assessment. However, there are few noninvasive, in situ, real-time, safe, and low-cost methods for detecting StWC of woody plants. This article presents a novel sensor for noninvasive detection of in situ StWC based on standing wave ratio. Moreover, extensive experiments were conducted to analyze the performance of this sensor including sensitive distance, measuring range, influence factors, and measuring accuracy. The experimental results show that the sensitive distance of StWC sensor is approximately 53 mm in axial direction and 20 mm in radial direction with the measuring range from 0.01 to 1.00 cm3 cm-3. The combined effects of stem EC and temperature on sensor output are significant and it is necessary to correct the error caused by the two factors. Compared with the oven-drying method, StWC sensor has higher measuring accuracy than Testo 606-2 which is a sensor for measuring wood water content and its average error is less than 0.01 cm3 cm-3. In addition, StWC sensor performed very well on the crape myrtle with high sensitivity equal to 1022.1 mV (cm3 cm-3)-1 and measuring results also accorded with the diurnal dynamics of stem water content.
Funder
Special Fund for Beijing Common Construction Project
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献