Research on Spoken Language Understanding Based on Deep Learning

Author:

Yanli Hui1ORCID

Affiliation:

1. Faculty of Foreign Languages and Business, Jiaozuo Normal College, Jiaozuo 454001, China

Abstract

Aiming at solving the problem that the recognition effect of rare slot values in spoken language is poor, which affects the accuracy of oral understanding task, a spoken language understanding method is designed based on deep learning. The local features of semantic text are extracted and classified to make the classification results match the dialogue task. An intention recognition algorithm is designed for the classification results. Each datum has a corresponding intention label to complete the task of semantic slot filling. The attention mechanism is applied to the recognition of rare slot value information, the weight of hidden state and corresponding slot characteristics are obtained, and the updated slot value is used to represent the tracking state. An auxiliary gate unit is constructed between the upper and lower slots of historical dialogue, and the word vector is trained based on deep learning to complete the task of spoken language understanding. The simulation results show that the proposed method can realize multiple rounds of man-machine spoken language. Compared with the spoken language understanding methods based on cyclic network, context information, and label decomposition, it has higher accuracy and F1 value and has higher practical application value.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference34 articles.

1. Review of Research on Task-Oriented Spoken Language Understanding

2. Automatic language generation simulation of two-way interactive robot;P. Qiao;Computer Simulation,2019

3. Grounded language interpretation of robotic commands through structured learning

4. Modified recurrent neural networks in spoken language understanding;J. Zhang;Computer Engineering and Applications,2019

5. Intention detection in spoken language based on context information;X. Yang;Computer Science,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3