Influence of Tunneling in Cohesionless Soil for Different Tunnel Geometry and Volume Loss under Greenfield Condition

Author:

Kanagaraju Raja1ORCID,Krishnamurthy Premalatha2

Affiliation:

1. Department of Civil Engineering, Kongu Engineering College, Perundurai, Tamilnadu 638060, India

2. Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamilnadu 600025, India

Abstract

This paper presents the numerical analysis of settlement to profile the vulnerable zone or influence zone due to tunneling activities in cohesionless deposits for free field or Greenfield conditions. The analysis considers the factors like saturated density (γsat), unsaturated density (γunsat), angle of shearing resistance (φ), deformation modulus (ES), volume loss (VL), and the support pressure of the shield head at the tunnel face. The obtained results using a finite element program (FEM) PLAXIS 3D are compared with measured and predicted surface settlement using field measuring instruments, and analytical and empirical solution show a reasonable agreement and are found to be conservative. From literature, for Greenfield condition the ground settlement equal to 10 mm is taken as the minimum value to map the influencing zone considering the fact that the structure which lies beyond this zone would undergo negligible settlement. Settlement trough and 10 mm settlement contour characteristics are presented for different tunnel sizes placed at the same depth and the same tunnel size placed at different depths, respectively. Various influencing zones are arrived for the sandy grounds of different denseness based on the parametrical studies involving parameters such as tunnel size “D,” tunnel axis depth “z,” and volume loss “VL.”

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3