Video Motion Magnification and Subpixel Edge Detection-Based Full-Field Dynamic Displacement Measurement

Author:

Duan Da-You1,Kuang K. S. C.2ORCID,Wang Zuo-Cai134ORCID,Sun Xiao-Tong1

Affiliation:

1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, Anhui, China

2. Department of Civil and Environmental Engineering, National University of Singapore, Singapore

3. Anhui Engineering Laboratory for Infrastructural Safety Inspection and Monitoring, Hefei 230009, Anhui, China

4. Engineering Research Center of Safety-Critical Industrial Measurement and Control Technology of the Ministry of Education, Hefei 230009, Anhui, China

Abstract

Noncontact measurement techniques in structural dynamics field have progressed significantly in the past few decades. Vision-based measurement techniques are unique in that they have the ability to achieve full-field measurement and possess the typical advantages associated with noncontact measurement techniques. Recently, vision-based techniques have also been applied to streaming of videos for structural dynamic displacement measurement. The most recent trends in vision-based measurements include target tracing, digital image correlation, and target-less approaches. There are, however, some shortcomings of the vision-based techniques such as susceptibilities to image noise, prevailing light conditions, and limit in measurement resolution. To reduce these shortcomings, a method known as video motion magnification (MM) can be used to amplify small structural motions. Using the phase-based motion magnification (PBMM) and subpixel edge detection methods, the full-field dynamic displacements of the structure can be obtained. The deep convolutional long short-term memory (ConvLSTM) network is applied to aid in the selection of the frequency band for magnification in the PBMM algorithm. To achieve higher measurement accuracy, the displacement results with and without MM are combined with the finite impulse response (FIR) filter which can reduce the error caused by the PBMM procedure. In the tests, plastic optical fiber (POF) displacement sensors are introduced and used as reference measurements to compare the dynamic displacement results from the proposed vision-based method. Compared with the measured displacements with POF sensors, the proposed method offers high level of accuracy for full-field displacement measurement.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3