A Survey of IoT Stream Query Execution Latency Optimization within Edge and Cloud

Author:

Abdullah Fatima1ORCID,Peng Limei1ORCID,Tak Byungchul1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

IoT (Internet of Things) streaming data has increased dramatically over the recent years and continues to grow rapidly due to the exponential growth of connected IoT devices. For many IoT applications, fast stream query processing is crucial for correct operations. To achieve better query performance and quality, researchers and practitioners have developed various types of query execution models—purely cloud-based, geo-distributed, edge-based, and edge-cloud-based models. Each execution model presents unique challenges and limitations of query processing optimizations. In this work, we provide a comprehensive review and analysis of query execution models within the context of the query execution latency optimization. We also present a detailed overview of various query execution styles regarding different query execution models and highlight their contributions. Finally, the paper concludes by proposing promising future directions towards advancing the query executions in the edge and cloud environment.

Funder

Kyungpook National University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance-Aware Big Data Management for Remote Sensing Systems;Arabian Journal for Science and Engineering;2023-08-18

2. Towards green smart cities using Internet of Things and optimization algorithms: A systematic and bibliometric review;Sustainable Computing: Informatics and Systems;2022-12

3. Querying Distributed Sensor Streams in the Edge-to-Cloud Continuum;2022 IEEE International Conference on Edge Computing and Communications (EDGE);2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3