Therapeutic Effects of Intravenous Injection of Fresh and Frozen Thawed HO-1-Overexpressed Ad-MSCs in Dogs with Acute Spinal Cord Injury

Author:

Khan Imdad Ullah1ORCID,Yoon Yongseok1,Choi Kyeung Uk1,Jo Kwang Rae1,Kim Namyul1,Lee Eunbee1,Kim Wan Hee1,Kweon Oh-Kyeong1ORCID

Affiliation:

1. BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 151-742 Seoul, Republic of Korea

Abstract

Owing to the antioxidant and anti-inflammatory functions of hemeoxygenase-1 (HO-1), HO-1-expressing canine adipose-derived mesenchymal stem cells (Ad-MSCs) could be efficacious in treating spinal cord injury (SCI). Further, frozen thawed HO-1 Ad-MSCs could be instantly available as an emergency treatment for SCI. We compared the effects of intravenous treatment with freshly cultured HO-1 Ad-MSCs (HO-1 MSCs), only green fluorescent protein-expressing Ad-MSCs (GFP MSCs), and frozen thawed HO-1 Ad-MSCs (FT-HO-1 MSCs) in dogs with acute SCI. For four weeks, dogs were evaluated for improvement in hind limb locomotion using a canine Basso Beattie Bresnahan (cBBB) score. Upon completion of the study, injured spinal cord segments were harvested and used for western blot and histopathological analyses. All cell types had migrated to the injured spinal cord segment. The group that received HO-1 MSCs showed significant improvement in the cBBB score within four weeks. This group also showed significantly higher expression of NF-M and reduced astrogliosis. There was reduced expression of proinflammatory cytokines (IL6, TNF-α, and IL-1β) and increased expression of anti-inflammatory markers (IL-10, HO-1) in the HO-1 MSC group. Histopathological assessment revealed decreased fibrosis at the epicenter of the lesion and increased myelination in the HO-1 MSC group. Together, these data suggest that HO-1 MSCs could improve hind limb function by increasing the anti-inflammatory reaction, leading to neural sparing. Further, we found similar results between GFP MSCs and FT-HO-1 MSCs, which suggest that FT-HO-1 MSCs could be used as an emergency treatment for SCI.

Funder

Seoul National University

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3