Ionothermal Synthesis of Metal Oxide-Based Nanocatalysts and Their Application towards the Oxidative Desulfurization of Dibenzothiophene

Author:

Alenazi Bader1,Alsalme Ali1ORCID,Alshammari Saad G.1,Khan Rais Ahmad1ORCID,Siddiqui Mohammed Rafiq H.1ORCID

Affiliation:

1. Department of Chemistry, College of Science, King Saud University, P. O. 2455, Riyadh 11451, Saudi Arabia

Abstract

Herein, different types of metal-containing ionic liquid (IL) complexes and various metal oxide-based nanocatalysts have been successfully prepared (from ionic liquids) and applied for the oxidative desulfurization (ODS) of dibenzothiophene (DBT). The ILs complexes are comprised of N,N′-dialkylimidazolium salts of the type [RMIM-Cl]2[MCln], where [RMIM+] = 1 alkyl-3-methylimidazolium and M = Mn(II)/Fe(II)/Ni(II)/Co(II). These complexes were prepared using an easy synthetic route by refluxing the methanolic solutions of imidazolium chloride and metal chlorides under facile conditions. The as-prepared complexes were further used as precursors during the ionothermal and chemical synthesis of various metal oxide-based nanocatalysts. The resulting ILs salts and metal oxides NPs have been characterized by FT-IR, TGA, XRD, SEM, and TEM analysis. The results indicate that thermal and chemical treatment of ILs based precursor has produced different phases of metal oxide NPs. The calcination produced α-Fe2O3, Mn3O4, and Co3O4, NPs, whereas the chemical treatment of the ILs salts have led to the production of Fe3O4, Mn2O3, and α-Co(OH)2. All the as-prepared salts and metal oxide-based nanocatalysts were used as catalysts towards ODS of dibenzothiophene. The oxidation of dibenzothiophene was performed at atmospheric conditions using hydrogen peroxide as the oxygen donor. Among various catalysts, the thermally obtained metal oxide NPs such as α-Fe2O3, Mn3O4, and Co3O4, have demonstrated relatively superior catalytic activities compared to the other materials. For example, among these nanocatalysts, α-Fe2O3 has exhibited a maximum conversion (∼99%) of dibenzothiophene (DBT) to dibenzothiophene sulfone (DBTO2).

Funder

King Saud University

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3