MKA: A Scalable Medical Knowledge-Assisted Mechanism for Generative Models on Medical Conversation Tasks

Author:

Liang Ke12ORCID,Wu Sifan3ORCID,Gu Jiayi4ORCID

Affiliation:

1. Pennsylvania State University, PA 16801, USA

2. National University of Defense Technology, 410073, China

3. Nvidia, Shanghai 201210, China

4. TMiRob, Shanghai 201203, China

Abstract

Using natural language processing (NLP) technologies to develop medical chatbots makes the diagnosis of the patient more convenient and efficient, which is a typical application in healthcare AI. Because of its importance, lots of researches have come out. Recently, the neural generative models have shown their impressive ability as the core of chatbot, while it cannot scale well when directly applied to medical conversation due to the lack of medical-specific knowledge. To address the limitation, a scalable medical knowledge-assisted mechanism (MKA) is proposed in this paper. The mechanism is aimed at assisting general neural generative models to achieve better performance on the medical conversation task. The medical-specific knowledge graph is designed within the mechanism, which contains 6 types of medical-related information, including department, drug, check, symptom, disease, and food. Besides, the specific token concatenation policy is defined to effectively inject medical information into the input data. Evaluation of our method is carried out on two typical medical datasets, MedDG and MedDialog-CN. The evaluation results demonstrate that models combined with our mechanism outperform original methods in multiple automatic evaluation metrics. Besides, MKA-BERT-GPT achieves state-of-the-art performance.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Endodontic Education;Journal of Endodontics;2024-05

2. Knowledge Graph Contrastive Learning Based on Relation-Symmetrical Structure;IEEE Transactions on Knowledge and Data Engineering;2024-01

3. SARF: Aliasing Relation–Assisted Self-Supervised Learning for Few-Shot Relation Reasoning;IEEE Transactions on Neural Networks and Learning Systems;2024

4. Attention mechanism is useful in spatio-temporal wind speed prediction: Evidence from China;Applied Soft Computing;2023-11

5. Scalable Incomplete Multi-View Clustering with Structure Alignment;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3