Grid-Based Whole Trajectory Clustering in Road Networks Environment

Author:

Wang Fangshu1ORCID,Wang Shuai2ORCID,Niu Xinzheng3ORCID,Zhu Jiahui3ORCID,Chen Ting3ORCID

Affiliation:

1. School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

2. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

3. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

Abstract

In the data mining of road networks, trajectory clustering of moving objects plays an important role in many applications. Most existing algorithms for this problem are based on every position point in a trajectory and face a significant challenge in dealing with complex and length-varying trajectories. This paper proposes a grid-based whole trajectory clustering model (GBWTC) in road networks, which regards the trajectory as a whole. In this model, we first propose a trajectory mapping algorithm based on grid estimation, which transforms the trajectories in road network space into grid sequences in grid space and forms grid trajectories by recognizing and eliminating redundant, abnormal, and stranded information of grid sequences. We then design an algorithm to extract initial clustering centers based on density weight and improve a shape similarity measuring algorithm to measure the distance between two grid trajectories. Finally, we dynamically allocate every grid trajectory to the best clusters by the nearest neighbor principle and an outlier function. For the evaluation of clustering performance, we establish a clustering criterion based on the classical Silhouette Coefficient to maximize intercluster separation and intracluster homogeneity. The clustering accuracy and performance superiority of the proposed algorithm are illustrated on a real-world dataset in comparison with existing algorithms.

Funder

Joint Funds of the Ministry of Education of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3