Surface Potential Analysis of Nanoscale Biomaterials and Devices Using Kelvin Probe Force Microscopy

Author:

Lee Hyungbeen1ORCID,Lee Wonseok1ORCID,Lee Jeong Hoon2,Yoon Dae Sung3ORCID

Affiliation:

1. Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea

2. Department of Electrical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea

3. Department of Bio-Convergence Engineering, Korea University, Seoul 02841, Republic of Korea

Abstract

In recent years, Kelvin probe force microscopy (KPFM) has emerged as a versatile toolkit for exploring electrical properties on a broad range of nanobiomaterials and molecules. An analysis using KPFM can provide valuable sample information including surface potential and work function of a certain material. Accordingly, KPFM has been widely used in the areas of material science, electronics, and biomedical science. In this review, we will briefly explain the setup of KPFM and its measuring principle and then survey representative results of various KPFM applications ranging from material analysis to device analysis. Finally, we will discuss some possibilities of KPFM on whether it is applicable to various sensor systems. Our perspective shed unique light on how KPFM can be used as a biosensor as well as equipment to measure electrical properties of materials and to recognize various molecular interactions.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3