Sound-Proximity: 2-Factor Authentication against Relay Attack on Passive Keyless Entry and Start System

Author:

Choi Wonsuk1,Seo Minhye1,Lee Dong Hoon1ORCID

Affiliation:

1. Graduate School of Information Security, Korea University, Seoul, Republic of Korea

Abstract

Passive keyless entry and start system has been widely used in modern cars. Car owners can open the door or start the engine merely by having the key in their pocket. PKES was originally designed to establish a communication channel between the car and its key within approximately one meter. However, the channel is vulnerable to relay attacks by which attackers unlock the door even if the key is out of range. Even though relay attacks have been recognized as a potential threat for over ten years, such attacks were thought to be impractical due to highly expensive equipment; however, the required cost is gradually practical. Recently, a relay attack has been demonstrated with equipment being sold only under $100. In this paper, we propose a sound-based proximity-detection method to prevent relay attacks on PKES systems. The sound is eligible to be applied to PKES because audio systems are commonly available in cars. We evaluate our method, considering environments where cars are commonly parked, and present the recording time satisfying both usability and security. In addition, we newly define an advanced attack, called the record-and-playback attack, for sound-based proximity detection, demonstrating that our method is robust to such an attack.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SoundID: Securing Mobile Two-Factor Authentication via Acoustic Signals;IEEE Transactions on Dependable and Secure Computing;2023-03-01

2. Physical Layer Protection Against Relay/Replay Attacks for Short-Range Systems;2023 IEEE Wireless Communications and Networking Conference (WCNC);2023-03

3. Location Information Verification for Reliable Resource Collaboration in Sharing Economy;2023 IEEE International Conference on Consumer Electronics (ICCE);2023-01-06

4. Risk-Based Authentication;Advances in Healthcare Information Systems and Administration;2022-06-24

5. A conceptual system dynamics model for cybersecurity assessment of connected and autonomous vehicles;Accident Analysis & Prevention;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3