Enhanced Production of Polymyxin E in Paenibacillus polymyxa by Replacement of Glucose by Starch

Author:

Yu Zhiliang1ORCID,Sun Zhongqi1,Yin Jianhua1ORCID,Qiu Juanping1ORCID

Affiliation:

1. College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China

Abstract

Polymyxin E or colistin, produced by Paenibacillus polymyxa, is an important antibiotic against Gram-negative pathogens. The objective of this study is to evaluate the effect of starch in fermentation medium on colistin biosynthesis in P. polymyxa. The results indicated that replacement of glucose by starch stimulated colistin production and biosynthesis rate. Overall, the stimulation extent was starch concentration-dependent. As expected, addition of starch induced the expression of amyE encoding amylase and increased amylase activity in fermentation solution. Additionally, replacement of glucose by starch resulted in residue reducing sugar and pH of fermentation mixture low relative to glucose as the sole sugar source. At the molecular level, it was found that replacement of glucose by starch has enhanced the relative expression level of ccpA encoding catabolite control protein A. Therefore, the repression of starch utilization by glucose could be probably relieved. In addition, use of starch stimulated the expression of regulatory gene spo0A but repressed the expression of another regulatory gene abrB. As a result, the expression of genes directly involved in colistin biosynthesis and secretion increased, indicating that at the transcriptional level spo0A and abrB played opposite roles in regulating colistin biosynthesis in P. polymyxa. Taken together, our data demonstrated that starch instead of glucose can promote colistin production probably by affecting the expression of colistin biosynthesis-related genes, as well as reducing the repression of glucose to a secondary metabolic product.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3