Affiliation:
1. School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
Abstract
To meet the requirements of different farming objects, this paper presents a novel constraint metamorphic reversible plough (CMRP) which has four distinct working phases and the feature of underactuation, and its prototype has been manufactured for practical testing purposes. Firstly, the kinematics of the mechanism in each phase are studied systematically with the closed-loop vector method, including displacement, velocity, and acceleration analysis. Considering the underactuated characteristics of the mechanism in the source phase, its dynamic models in the source phase are further established by the Lagrange equation. Based on the theory that velocity and acceleration are the same in an extremely brief period, the motion laws of the slider in the source phase can be obtained. To obtain the constraint force/torque acting on the crucial joints in each phase, the dynamic model of the CMRP is established by the Newton–Euler equation. Furthermore, the initial position of the CMRP with a flexible prismatic joint can be determined using the static balance equation. Finally, the obtained kinematic and dynamic models of the CMRP in each phase are verified, respectively, through comparing the simulation results in SolidWorks and Matlab software, and the experiment with the prototype is conducted. The CMRP proposed in this study provides a feasible technical scheme for improving the capability of reversible plough over unknown and complex terrains.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献