The Conditioned Medium of Calcined Tooth Powder Promotes the Osteogenic and Odontogenic Differentiation of Human Dental Pulp Stem Cells via MAPK Signaling Pathways

Author:

Wu Jintao12,Li Na2,Fan Yuan12,Wang Yanqiu12,Gu Yongchun3,Li Zehan2,Pan Yin2,Romila Gobin2,Zhou Zuomin4ORCID,Yu Jinhua12ORCID

Affiliation:

1. Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China

2. Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China

3. Cenral Lab, First People’s Hospital of Wujiang Dist, Suzhou, Jiangsu, China

4. Department of Histology and Embryology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China

Abstract

The calcined tooth powder (CTP), a type of allogeneic biomimetic mineralized material, has been confirmed that can promote new bone formation when obtained at high temperature. The aim of this study was to investigate effects of the conditioned medium of calcined tooth powder (CTP-CM) on the osteogenic and odontogenic differentiation of human dental pulp stem cells (hDPSCs) and the underlying mechanisms involved. First, ALP activity assay determined that 200 μg/mL was the optimal concentration of CTP-CM for the following experiments. CTP-CM had no significant effect on the proliferation of hDPSCs as indicated by CCK-8 and FCM analysis. Both the gene and protein (DSPP/DSPP, RUNX2/RUNX2, OCN/OCN, OSX/OSX, OPN/OPN, ALP/ALP, and COL-1/COL-1) expression levels increased in the CTP-CM-induced hDPSC group as compared with those in the control group at day 3 or 7, showing the positive regulation of CTP-CM on the osteo/odontogenic differentiation of hDPSCs. Mechanistically, MAPK signaling pathways were activated after the CTP-CM treatment, and the inhibitors targeting MAPK were identified which weakened the effects of CTM-CM on the committed differentiation of hDPSCs. These findings could lead to the creation of stem cell therapies for dental regeneration.

Funder

Science and Technology Development Project of Jiangsu Province

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3