Locomotion Strategy Selection for a Hybrid Mobile Robot Using Time of Flight Depth Sensor

Author:

Saudabayev Artur1,Kungozhin Farabi1,Nurseitov Damir1,Varol Huseyin Atakan1

Affiliation:

1. Department of Robotics, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

The performance of a mobile robot can be improved by utilizing different locomotion modes in various terrain conditions. This creates the necessity of having a supervisory controller capable of recognizing different terrain types and changing the locomotion mode of the robot accordingly. This work focuses on the locomotion strategy selection problem for a hybrid legged wheeled mobile robot. Supervisory control of the robot is accomplished by the terrain recognizer, which classifies depth images obtained from a commercial time of flight depth sensor and selects different locomotion mode subcontrollers based on the recognized terrain type. For the terrain recognizer, a database is generated consisting of five terrain classes (Uneven, Level Ground, Stair Up, Stair Down, and Nontraversable). Depth images are enhanced using confidence map based filtering. The accuracy of the terrain classification using Support Vector Machine classifier for the testing database in five-class terrain recognition problem is 97%. Real-world experiments assess the locomotion abilities of the quadruped and the capability of the terrain recognizer in real-time settings. The results of these experiments show depth images processed in real time using machine learning algorithms can be used for the supervisory control of hybrid robots with legged and wheeled locomotion capabilities.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobile robot localization: Current challenges and future prospective;Computer Science Review;2024-08

2. Designing an autonomous robot prototype for detecting traffic violations;8TH ENGINEERING AND 2ND INTERNATIONAL CONFERENCE FOR COLLEGE OF ENGINEERING – UNIVERSITY OF BAGHDAD: COEC8-2021 Proceedings;2023

3. A review of Li-ion batteries for autonomous mobile robots: Perspectives and outlook for the future;Journal of Power Sources;2022-10

4. A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods;IEEE Access;2020

5. Deep Learning Based Object Recognition Using Physically-Realistic Synthetic Depth Scenes;Machine Learning and Knowledge Extraction;2019-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3