Enhancement of Capacitive Performance in Titania Nanotubes Modified by an Electrochemical Reduction Method

Author:

Samsudin Nurul Asma1ORCID,Zainal Zulkarnain12ORCID,Lim Hong Ngee12,Sulaiman Yusran13ORCID,Chang Sook-Keng2ORCID,Lim Ying-Chin4ORCID,Mohd Amin Wardatun Nadrah1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2. Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3. Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

4. School of Chemistry and Environment, Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Abstract

Highly ordered titania nanotubes (TNTs) were synthesised by an electrochemical anodization method for supercapacitor applications. However, the capacitive performance of the TNTs was relatively low and comparable to the conventional capacitor. Therefore, in order to improve the capacitive performance of the TNTs, a fast and facile electrochemical reduction method was applied to modify the TNTs (R-TNTs) by introducing oxygen vacancies into the lattice. X-ray photoelectron spectroscopy (XPS) data confirmed the presence of oxygen vacancies in the R-TNTs lattice upon the reduction of Ti4+ to Ti3+. Electrochemical reduction parameters such as applied voltage and reduction time were varied to optimize the best conditions for the modification process. The electrochemical performance of the samples was analyzed in a three-electrode configuration cell. The cyclic voltammogram recorded at 200 mV s−1 showed a perfect square-shaped voltammogram indicating the excellent electrochemical performance of R-TNTs prepared at 5 V for 30 s. The total area of the R-TNTs voltammogram was 3 times larger than the unmodified TNTs. A specific capacitance of 11.12 mF cm−2 at a current density of 20 μA cm−2 was obtained from constant current charge-discharge measurements, which was approximately 57 times higher than that of unmodified TNTs. R-TNTs also displayed outstanding cycle stability with 99% capacity retention after 1000 cycles.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3