High-Level Synthesis of In-Circuit Assertions for Verification, Debugging, and Timing Analysis

Author:

Curreri John1,Stitt Greg1ORCID,George Alan D.1ORCID

Affiliation:

1. NSF Center for High-Performance Reconfigurable Computing (CHREC), ECE Department, University of Florida, Gainesville, FL 32611-6200, USA

Abstract

Despite significant performance and power advantages compared to microprocessors, widespread usage of FPGAs has been limited by increased design complexity. High-level synthesis (HLS) tools have reduced design complexity but provide limited support for verification, debugging, and timing analysis. Such tools generally rely on inaccurate software simulation or lengthy register-transfer-level simulations, which are unattractive to software developers. In this paper, we introduce HLS techniques that allow application designers to efficiently synthesize commonly used ANSI-C assertions into FPGA circuits, enabling verification and debugging of circuits generated from HLS tools, while executing in the actual FPGA environment. To verify that HLS-generated circuits meet execution timing constraints, we extend the in-circuit assertion support for testing of elapsed time for arbitrary regions of code. Furthermore, we generalize timing assertions to transparently provide hang detection that back annotates hang occurrences to source code. The presented techniques enable software developers to rapidly verify, debug, and analyze timing for FPGA applications, while reducing frequency by less than 3% and increasing FPGA resource utilization by 0.7% or less for several application case studies on the Altera Stratix-II EP2S180 and Stratix-III EP3SE260 using Impulse-C. The presented techniques reduced area overhead by as much as 3x and improved assertion performance by as much as 100% compared to unoptimized in-circuit assertions.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Hardware and Architecture

Reference5 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3