The Role and Mechanism of SIRT6 in Regulating Phenotype Transformation of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm

Author:

Guan Xiaomei1,Xin Hai1,Xu Meiling2,Ji Jianlei3,Li Jun1ORCID

Affiliation:

1. Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao 266700, China

2. Department of Interventional Operating Room, Affiliated Hospital of Qingdao University, Qingdao 266700, China

3. Department of Kidney Transplantation, Affiliated Hospital of Qingdao University, Qingdao 266700, China

Abstract

Background. Data mining of current gene expression databases has not been previously performed to determine whether sirtuin 6 (SIRT6) expression participates in the pathological process of abdominal aortic aneurysm (AAA). The present study was aimed at investigating the role and mechanism of SIRT6 in regulating phenotype transformation of vascular smooth muscle cells (VSMC) in AAA. Methods. Three gene expression microarray datasets of AAA patients in the Gene Expression Omnibus (GEO) database and one dataset of SIRT6-knockout (KO) mice were selected, and the differentially expressed genes (DEGs) were identified using GEO2R. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of both the AAA-related DEGs and the SIRT6-related DEGs were conducted. Results. GEO2R analysis showed that the expression of SIRT6 was downregulated for three groups and upregulated for one group in the three datasets, and none of them satisfied statistical significance. There were top 5 DEGs (KYNU, NPTX2, SCRG1, GRK5, and RGS5) in both of the human AAA group and SIRT6-KO mouse group. Top 25 ontology of the SIRT6-KO-related DEGs showed that several pathways including tryptophan catabolic process to kynurenine and negative regulation of cell growth were enriched in the tissues of thickness aortic wall biopsies of AAA patients. Conclusions. Although SIRT6 mRNA level itself did not change among AAA patients, SIRT6 may play an important role in regulating several signaling pathways with significant association with AAA, suggesting that SIRT6 mRNA upregulation is a protective factor for VSMC against AAA.

Funder

Qingdao University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3