A Blockchain-Based Key-Revocation Access Control for Open Banking

Author:

Riad Khaled12ORCID,Elhoseny Mohamed34

Affiliation:

1. Computer Science Department, College of Computer Sciences & Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia

2. Mathematics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

3. College of Computing and Informatics, University of Sharjah, Sharjah 27272, UAE

4. Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt

Abstract

Open banking allows banks and financial sectors to easily access the customers’ financial data which is revolutionizing. It also provides the customers with excellent cloud access to various providers’ wide range of financial services. The storage of such sensitive services and data on cloud servers is a double-edged sword. It can ease and support fine-grained access to such services/data anywhere and anytime, supporting the open banking system. But, on the other hand, data privacy and secrecy are a challenge. Thus, efficient access control should exist for open banking’s services and data to protect cloud-hosted financial sensitive data from unauthorized customers. This paper proposes a new access control scheme that employs blockchain for the key-revocation process. We implement the smart contract’s functions on the Ethereum platform and test the contract’s code on the Kovan Testnet before deploying it to the Mainnet. Although the customer is authenticated to open banking, his key/s can be revoked according to the status response of the bank branch. Thus, his access to financial services and data is denied. We did comprehensive experiments for the revocation status response time, data exchanged until receiving the revocation status, and the time spent updating the policy. Also, we compared the results of our proposed scheme with two well-known methods—Certificate Revocation List (CRL) and Online Certificate Status Protocol (OCSP). The experimental results show that our proposed scheme (BKR-AC) has a faster response time than Certificate Revocation List (CRL) and Online Certificate Status Protocol (OCSP) in case of nonrevoked keys/certificates and a slower response time in case of revoked keys to avoid nonrevoking a revoked key. But the data exchanged is an average for BKR-AC between CRL and OCSP, which is still a tiny amount and accepted. The security analysis proved that our scheme is secure against some well-known attacks on open banking systems. In addition, it is also secured against the chosen-text attack by employing the challenge-response authentication mechanism.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel OTP Based Pin Generation and Face Recognition Methods in Online Banking;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-07-30

2. Utilizing Real – Time Face Recognition Based Bio-Metric System for Online Transaction;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-05-20

3. A lightweight smart contracts framework for blockchain‐based secure communication in smart grid applications;IET Generation, Transmission & Distribution;2024-01-13

4. A novel revocation management for distributed environment: a detailed study;Cluster Computing;2023-08-26

5. An Assessment on Bank Openness, Open Banking and Open Data in Turkey;Ekonomi ve Finansal Araştırmalar Dergisi;2023-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3