Main Controlling Factors and Formation Mode of Geothermal Anomaly in Eastern Chenghe Mining Area of Weibei Coalfield

Author:

Peng Tao12ORCID,Liu Kaixiang3,Chen Yue12ORCID,Wang Feng4,Li Bing5

Affiliation:

1. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China

2. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China

3. China Coal Xi’an Design Engineering Co., Ltd., Xi’an 710054, China

4. Shaanxi Coal Chenghe Mining Co., Ltd., Chengcheng 715200, China

5. Shaanxi 139 Coal Geology & Hydrogeology Co., Ltd., Weinan 714000, China

Abstract

Geothermal anomaly has gradually become a prominent issue affecting the efficient mining of coal with the depth of coal mining increasing in eastern Chenghe mining area of Weibei coalfield. Here, we comprehensively investigated the distribution characteristics of the present geothermal field, analyzed the main controlling factors, and constructed forming mode of geothermal anomaly by the temperature measurement in surface borehole and underground water, combined with coal-rock thermal conductivity test. The results show that the geothermal gradient ranged from 25.7°C/km to 54.3°C/km. The areas with geothermal gradient greater than 30°C/km accounted for 88.31%, and there was the highest gradient value in the southeast F1 fault zone. The heat flow was between 66.81 mW/m2 to 128.49 mW/m2, which belonged to the obvious high heat flow area. Under the action of the main controlling factors such as fault, fold, coal-rock thermal conductivity, and groundwater activity in the region, the geothermal gradient and geothermal heat flow values showed an increasing trend from northwest to southeast. According to the distribution characteristics of heat flow and the action mechanism of main controlling factors, the geothermal anomaly in the study area was finally divided into two forming modes, i.e., fault-deep circulating hot water uplifting type and coal seam heat resistance-fold type. The research provides guidance for the geothermal hazard prevention of coal mine and the rational development and utilization of geothermal resources.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3