Hyperparameter Optimization of the Machine Learning Model for Distillation Processes

Author:

Oh Kwang Cheol,Kwon Hyukwon,Park Sun Yong,Kim Seok Jun,Kim JunghwanORCID,Kim DaeHyunORCID

Abstract

This study was conducted to enhance the efficiency of chemical process systems and address the limitations of conventional methods through hyperparameter optimization. Chemical processes are inherently continuous and nonlinear, making stable operation challenging. The efficiency of processes often varies significantly with the operator’s level of expertise, as most tasks rely on experience. To move beyond the constraints of traditional simulation approaches, a new machine learning‐based simulation model was developed. This model utilizes a recurrent neural network (RNN) algorithm, which is ideal for analyzing time‐series data from chemical process systems, presenting new possibilities for applications in systems with special chemical reactions or those that are continuous and complex. Hyperparameters were optimized using a grid search method, and optimal results were confirmed when the model was applied to an actual distillation process system. By proposing a methodology that utilizes machine learning for the optimization of chemical process systems, this research contributes to solving new problems that were previously unaddressed. Based on these results, the study demonstrates that a machine learning simulation model can be effectively applied to continuous chemical process systems. This application enables the derivation of unique hyperparameters tailored to the specificities of a limited control volume system.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3