Identification of Senescence-Associated Biomarkers in Diabetic Glomerulopathy Using Integrated Bioinformatics Analysis

Author:

Zhang Li12,Wang Zhaoxiang2ORCID,Tang Fengyan2,Wu Menghuan3,Pan Ying2ORCID,Bai Song3,Lu Bing2ORCID,Zhong Shao2ORCID,Xie Ying1ORCID

Affiliation:

1. Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215008, Jiangsu, China

2. Department of Endocrinology, The First People’s Hospital of Kunshan, Kunshan 215300, Jiangsu, China

3. Department of Cardiology, Xuyi People’s Hospital, Xuyi 211700, Jiangsu, China

Abstract

Background. Cellular senescence is thought to play a significant role in the onset and development of diabetic nephropathy. The goal of this study was to explore potential biomarkers associated with diabetic glomerulopathy from the perspective of senescence. Methods. Datasets about human glomerular biopsy samples related to diabetic nephropathy were systematically obtained from the Gene Expression Omnibus database. Hub senescence-associated genes were investigated by differential gene analysis and Least Absolute Shrinkage and Selection Operator analysis. Cluster analysis was employed to identify senescence molecular subtypes. A single-cell dataset was used to validate the above findings and further evaluate the senescence environment. The relationship between these genes and the glomerular filtration rate was explored based on the Nephroseq database. These gene expressions have also been explored in various kidney diseases. Results. Twelve representative senescence-associated genes (VEGFA, IQGAP2, JUN, PLAT, ETS2, ANG, MMP14, VEGFC, SERPINE2, CXCR2, PTGES, and EGF) were finally identified. Biological changes in immune inflammatory response, cell cycle regulation, metabolic regulation, and immune microenvironment have been observed across different molecular subtypes. The above results were also validated based on single-cell analysis. Additionally, we also identified several significantly altered cell communication pathways, including COLLAGEN, PTN, LAMININ, SPP1, and VEGF. Finally, almost all these genes could well predict the occurrence of diabetic glomerulopathy based on receiver operating characteristic analysis and are associated with the glomerular filtration rate. These genes are differently expressed in various kidney diseases. Conclusion. The present study identified potential senescence-associated biomarkers and further explored the heterogeneity of diabetic glomerulopathy that might provide new insights into the diagnosis, assessment, management, and personalized treatment of DN.

Funder

Suzhou Science and Technology Planning Project

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3