Affiliation:
1. Department of Earth and Environmental Sciences, Bahria School of Engineering and Applied Sciences, Bahria University, Islamabad 44000, Pakistan
Abstract
An approach is proposed to improve modeling for shale gas reservoirs, integrating key parameters such as total organic carbon (TOC) and porosity. Seismic inversion uses seismic reflection data and well-log information to improve geological and geophysical interpretation and estimate rock properties with high-resolution subsurface acoustic impedance, including low and high frequencies. The Ranikot Formation in the Central Indus Basin, Pakistan, is a Paleocene-age formation with the potential to act as reservoir, seal, and source rock. The porosity of the Lower Ranikot reservoir in the Mehar Block was calculated using seismic inversion analysis with the Mehar-02 well. The petrophysical analysis yielded an effective porosity of 5.8%. Similarly, when calculated using seismic inversion, the porosity fell within the 5.5%–6.0% range. Determining the TOC content is crucial in evaluating unconventional shale resources. Petrophysical approaches, such as the ΔlogR method, offer a fast, convenient, and cost-effective means of estimating TOC from well logs. This method is commonly used in conventional source rock evaluation and applied to unconventional resource play evaluation. On the other hand, seismic inversion techniques were used to conduct TOC analysis in the absence of core data in order to estimate the source potential of the Upper Ranikot Formation. To estimate the TOC log for the Upper Ranikot shales in the Mehar Block, the Passey equation was used on the well logs of the Mehar-02 well. The estimated TOC for the Upper Ranikot shales is around 2.0%, which falls within the fair TOC range.
Funder
Higher Education Commission, Pakistan
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献