MAP+MAP/M2/N/∞Queueing System with Absolute Priority and Reservation of Servers

Author:

Sun Bin12,Lee Moon Ho3,Dudin Alexander N.4,Dudin Sergey A.4

Affiliation:

1. School of Economics and Management, Inner Mongolia University of Science and Technology, 014010 Baotou, China

2. Inner Mongolia Industry Informatization and Innovation Research Center, Inner Mongolia University of Science and Technology, 014010 Baotou, China

3. Institute of Information and Communication, Chonbuk National University, Jeonju 561-765, Republic of Korea

4. Department of Applied Mathematics and Computer Science, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus

Abstract

We consider a multiserver queueing system with an infinite buffer and two types of customers. The flow of customers is described by two Markovian arrival processes (MAPs). Type 1 customers have absolute priority over type 2 customers. If the arriving type 1 customer encounters all servers busy, but some of them provide service to type 2 customers, service of one type 2 customer is terminated and type 1 customer occupies the released server. To avoid too frequent termination of service of type 2 customers, we suggest reservation of some number of servers for type 1 customers. Type 2 customers, who do not succeed to get a server upon arrival or are knocked out from a server, join the buffer or leave the system forever. During a waiting period in the buffer, type 2 customers can be impatient and may leave the system forever. The ergodicity condition of the system is derived in an analytically tractable form. The stationary distribution of the system states and the main performance measures are calculated. The Laplace-Stieltjes transform of the waiting time distribution of an arbitrary type 2 customer is derived. Numerical examples are presented. The problem of the optimal channel reservation is numerically solved.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3