A Mathematical Modelling and Analysis of COVID-19 Transmission Dynamics with Optimal Control Strategy

Author:

Gebremeskel Abadi Abay1ORCID,Berhe Hailay Weldegiorgis2,Abay Adugna Temesgen1

Affiliation:

1. Department of Mathematics, Raya University, Maichew, Ethiopia

2. Department of Mathematics, Mekelle University, Mekelle, Ethiopia

Abstract

We proposed a deterministic compartmental model for the transmission dynamics of COVID-19 disease. We performed qualitative and quantitative analysis of the deterministic model concerning the local and global stability of the disease-free and endemic equilibrium points. We found that the disease-free equilibrium is locally asymptotically stable when the basic reproduction number is less than unity, while the endemic equilibrium point becomes locally asymptotically stable if the basic reproduction number is above unity. Furthermore, we derived the global stability of both the disease-free and endemic equilibriums of the system by constructing some Lyapunov functions. If R 0 1 , it is found that the disease-free equilibrium is globally asymptotically stable, while the endemic equilibrium point is globally asymptotically stable when R 0 > 1 . The numerical results of the general dynamics are in agreement with the theoretical solutions. We established the optimal control strategy by using Pontryagin’s maximum principle. We performed numerical simulations of the optimal control system to investigate the impact of implementing different combinations of optimal controls in controlling and eradicating COVID-19 disease. From this, a significant difference in the number of cases with and without controls was observed. We observed that the implementation of the combination of the control treatment rate, u 2 , and the control treatment rate, u 3 , has shown effective and efficient results in eradicating COVID-19 disease in the community relative to the other strategies.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3