Antioxidation Function of EGCG by Activating Nrf2/HO-1 Pathway in Mice with Coronary Heart Disease

Author:

Huang Xiaoyi1,Chu Yang2,Ren Hua1,Pang Xiaofen1ORCID

Affiliation:

1. Department of Geriatrics, Luwan Branch, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 149 Chongqing South Road Huangpu District, Shanghai 200020, China

2. Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China

Abstract

Objective. To explore the effect and mechanism of epigallocatechin gallate (EGCG) in mice with coronary heart disease (CHD). Methods. Firstly, a CHD model of mouse was established by feeding mice high-fat diet and randomly divided into four groups, including Model group (0.5% sodium cholate) and 10 mg/kg EGCG, 20 mg/kg EGCG, and 40 mg/kg EGCG groups. After oral administration of sodium cholate or EGCG, HE staining was conducted to assess the pathological changes of mouse cardiac tissues in each group of mice, biochemical kits to measure the levels of blood lipid and oxidative stress substance activity, and western blot to detect matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGFA), as well as expression levels of protein related to Nrf2/HO-1/NQO1 pathway in cardiac tissues. Results. The mice in the CHD model appeared to have myocardial pathological damage with elevated serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and decreased high-density lipoprotein cholesterol (HDL-C). Of note, administration of EGCG significantly attenuated myocardial injuries and improved blood lipid levels in mice in a concentration-dependent manner. The advent of EGCG significantly decreased the expression of VEGFA and MMP-2 and increased the activity of superoxide dismutase (SOD), when reducing the content of reactive oxygen species (ROS) in the myocardial tissue and upregulating the expression of HO-1, NQO1, and Nrf2. Conclusion. EGCG may reduce atherosclerotic plaque and alleviate pathological damage in the cardiac tissue of CHD mice as well as improve blood lipid levels with antioxidative effect. The mechanism of its effect may be related to the activation of the Nrf2/HO-1/NQO1 antioxidant pathway in vivo of the CHD mice.

Funder

Shanghai Huangpu District Research Project

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Reference34 articles.

1. The Effect of Combined Ezetimibe/Atorvastatin Therapy vs. Atorvastatin Monotherapy on the Erythrocyte Membrane Structure in Patients with Coronary Artery Disease: A Pilot Study

2. Research progress of treatment of coronary heart disease in elderly patient;X. F. Guo;Medical Recapitulate,2021

3. Summary of the 2018 Report on cardiovascular diseases in China;S. T. Hu;Chinese Circulation Journal,2019

4. The Effect of Sodium Tanshinone IIA Sulfate and Simvastatin on Elevated Serum Levels of Inflammatory Markers in Patients with Coronary Heart Disease: A Study Protocol for a Randomized Controlled Trial

5. Clinical analysis: herbal medicine of activating blood, removing stasis and regulating qi in coronary heart disease and angina petoris;J. Chen;World Chinese Medicine,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3