Ethanol Dehydration over WO3/TiO2Catalysts Using Titania Derived from Sol-Gel and Solvothermal Methods

Author:

Tresatayawed Anchale1,Glinrun Peangpit2,Jongsomjit Bunjerd1ORCID

Affiliation:

1. Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

2. Department of Petrochemicals and Environmental Management, Faculty of Engineering, Pathumwan Institute of Technology, Phathumwan, Bangkok 10330, Thailand

Abstract

The present study aims to investigate the catalytic ethanol dehydration to higher value products including ethylene, diethyl ether (DEE), and acetaldehyde. The catalysts used for this reaction were WO3/TiO2catalysts having W loading of 13.5 wt.%. For a comparative study, the TiO2supports employed were varied by two different preparation methods including the sol-gel and solvothermal-derived TiO2supports, denoted as TiO2-SG and TiO2-SV, respectively. It is obvious that the different preparation methods essentially altered the physicochemical properties of TiO2supports. It was found that the TiO2-SV exhibited higher surface area and pore volume and larger amounts of acid sites than those of TiO2-SG. As a consequence, different characteristics of support apparently affected the catalytic properties of WO3/TiO2catalysts. As expected, both catalysts WO3/TiO2-SG and WO3/TiO2-SV exhibited increased ethanol conversion with increasing temperatures from 200 to 400°C. It appeared that the highest ethanol conversion (ca. 88%) at 400°C was achieved by the WO3/TiO2-SV catalysts due to its high acidity. It is worth noting that the presence of WO3onto TiO2-SV yielded a remarkable increase in DEE selectivity (ca. 68%) at 250°C. In summary, WO3/TiO2-SV catalyst is promising to convert ethanol into ethylene and DEE, having the highest ethylene yield of ca. 77% at 400°C and highest DEE yield of ca. 26% at 250°C. These can be attributed to proper pore structure, acidity, and distribution of WO3.

Funder

Chulalongkorn University

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3