Predicting Quality of Service via Leveraging Location Information

Author:

Chen Liang1ORCID,Xie Fenfang1,Zheng Zibin12ORCID,Wu Yaoming1

Affiliation:

1. School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China

2. National Engineering Research Center of Digital Life, Sun Yat-sen University, Guangzhou 510006, China

Abstract

QoS (Quality of Service) (our approach can be applied to a wide variety of services; in this paper, we focus on Web services) performance is intensively relevant to locations due to the network distance and the Internet connection between users and services. Thus, considering the location information of services and users is necessary. However, the location information has been ignored by most previous work. In this paper, we take both services’ and users’ location information into account. Specifically, we propose a location-aware QoS prediction approach, called LANFM, by exploiting neural network techniques and factorization machine to improve user-perceived experience. First of all, the information (e.g., id and location) of services and users is expressed as embedding vectors by leveraging neural network techniques. Then, the inner product of various embedding vectors, along with the weighted sum of feature vectors, is used to predict the QoS values. It should be noted that the inner product operation could capture the interactions between services and users, which is helpful to predict QoS values of services that have not been invoked by users. A collection of extensive experiments have been carried out on a real-world dataset to validate the effectiveness of the LANFM model.

Funder

National Key Research and Development Program

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial Context-Aware Time-Series Forecasting for QoS Prediction;IEEE Transactions on Network and Service Management;2023-06

2. A Personalized Federated Tensor Factorization Framework for Distributed IoT Services QoS Prediction From Heterogeneous Data;IEEE Internet of Things Journal;2022-12-15

3. A Location–Time-Aware Factorization Machine Based on Fuzzy Set Theory for Game Perception;Applied Sciences;2022-12-14

4. Web Service QoS Prediction Based on Reputation and Location Aware Matrix Factorization;2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta);2022-12

5. Topology-Aware Neural Model for Highly Accurate QoS Prediction;IEEE Transactions on Parallel and Distributed Systems;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3