Adsorption Characteristics and Transport Behavior of Cr(VI) in Shallow Aquifers Surrounding a Chromium Ore Processing Residue (COPR) Dumpsite

Author:

Liu Yu12ORCID,Li Yin2,Hu Yucheng2,Mostofa Khan M. G.1,Li Siliang1,Liu Zhenying3

Affiliation:

1. Institute of Surface-Earth System Science, Tianjin University, Weijin Road 92, Tianjin 300072, China

2. Tianjin Hydraulic Science Research Institute, Youyi Road 60, Tianjin 300061, China

3. School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300191, China

Abstract

This study explored the stratigraphic distribution and soil/shallow aquifer characteristics surrounding a chromium ore processing residue (COPR) dumpsite at a former chemical factory in China. Total Cr levels in top soils (5–10 cm) nearby the COPR dumpsite were in the range of 8571.4–10711.4 mg/kg. Shallow aquifers (1–6 m) nearby the COPR dumpsite showed a maximum total Cr level of 9756.7 mg/kg. The concentrations of Cr(VI) in groundwater nearby the COPR dumpsite were 766.9–1347.5 mg/L. These results display that the top soils, shallow aquifers, and groundwater of the study site are severely polluted by Cr(VI). Then, three aquifers (silt, clay, and silty clay), respectively, collected from the depth of 1.4–2.4 m, 2.4–4.8 m, and 4.8–11.00 m were first used to evaluate the adsorption characteristics and transport behavior of Cr(VI) in shallow aquifers by both batch and column experiments. The adsorption of Cr(VI) on tested aquifers was well described by pseudo-second-order equation and Freundlich model. The adsorption capacities of Cr(VI) on three aquifers followed the order: clay > silty clay > silt. The kinetics proved that Cr(VI) is not easily adsorbed by the aquifer mediums but transports with groundwater. Thermodynamics indicated that Cr(VI) adsorption on tested aquifers was feasible, spontaneous, and endothermic. Cr(VI) adsorption on tested aquifers decreased with increasing pH. Furthermore, the transport of Cr(VI) in adsorption columns followed the sequence of clay < silty clay < silt. Desorption column experiments infer that the Cr(VI) adsorbed on aquifers will desorb and release into groundwater in the case of rainwater leaching. Therefore, a proper treatment of the COPR and a comprehensive management of soils are vital to prevent groundwater pollution.

Funder

Science and Technology Project of Tianjin Water Bureau

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3