Transmutations of Long-Lived and Medium-Lived Fission Products Extracted from CANDU and PWR Spent Fuels in an Accelerator-Driven System

Author:

Arslan Alper Buğra1ORCID,Yilmaz İlayda1,Bakir Gizem2ORCID,Yapici Hüseyin1ORCID

Affiliation:

1. Erciyes Üniversitesi Mühendislik Fakültesi, 38039 Kayseri, Turkey

2. Cumhuriyet Üniversitesi Teknoloji Fakültesi, 58140 Sivas, Turkey

Abstract

This study presents the time-dependent analyses of transmutations of long-lived fission products (LLFPs) and medium-lived fission products (MLFPs) occurring in thermal reactors in a conceptual helium gas-cooled accelerator-driven system (ADS). In accordance with this purpose, the CANDU-37 and PWR 15 × 15 spent fuels are separately considered. The ADS consists of LBE-spallation neutron target, subcritical fuel zone, and graphite reflector zone. While the considered ADS is fueled with the spent nuclear fuels extracted from each thermal reactor without the use of additional fuel, fission products extracted from same thermal reactor are also placed into transmutation zone in graphite reflector zone. The LLFP transmutation performance of the modified ADS is analyzed by considering three different spent fuels extracted from the thermal reactors. Spent fuels are extracted from CANDU-37 in case A, from PWR-15 × 15 in case B, and from CANDU-37 fueled with mixture of PWR 15 × 15 spent fuel and 46% ThO2 in case C. The LBE target is bombard with protons of 1000 MeV. The proton beam power is assumed as 20 MW, which corresponds to 1.24828·1017 protons per second. MCNPX 2.7 and CINDER 90 computer codes are used for the time-dependent burn calculations. The ADS is operated under subcritical mode until the value of keff increases to 0.984, and the maximum operation times are obtained as 3400, 3270, and 5040 days according to the spent fuel cases of A, B, and C, respectively. The calculations bring out that in the modified ADS, LLFPs and MLFPs, which are extracted from thermal reactors, can be transformed to stable isotopes in significant amounts along with energy production.

Funder

Erciyes Üniversitesi

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3