Ultrasound Image Texture Feature Learning-Based Breast Cancer Benign and Malignant Classification

Author:

Gong Huiling1,Qian Mengjia2,Pan Gaofeng3ORCID,Hu Bin1ORCID

Affiliation:

1. Department of Ultrasound, Minhang Hospital, Fudan University, Shanghai, China

2. Ruijin Hospital Affiliated to the Shanghai Jiao Tong University Medical School, Shanghai 200020, China

3. Department of Surgical, Minhang Hospital, Fudan University, Shanghai, China

Abstract

The use of ultrasound images to acquire breast cancer diagnosis information without invasion can reduce the physical and psychological pain of breast cancer patients and is of great significance for the diagnosis and treatment of breast cancer. There are some differences in the texture of breast cancer between benign and malignant cases. Therefore, this paper proposes an adaptive learning method based on ultrasonic image texture features to identify breast cancer. Specifically, firstly, we used dictionary learning and sparse representation to learn the ultrasonic image texture dictionary of benign and malignant cases, respectively, and then used the combination of the two dictionaries to represent the test image to obtain the texture distribution characteristics of the test image under the two dictionary representations, which called the sparse representation coefficient. Finally, these above features were filtered by sparse representation and sent to sparse representation classifier to establish benign and malignant classification model. 128 cases were randomly divided into training and testing sets according to 2: 1 for training and testing. The proposed method has achieved state-of-the-art results, with an accuracy of 0.9070 and the area under the receiver operating characteristic curve of 0.9459. The results demonstrate that the proposed method has the potential to be used in the clinical diagnosis of benign and malignant breast cancer.

Funder

Natural Science Foundation of Minhang District, Shanghai

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Active contour and texture features hybrid model for breast cancer detection from ultrasonic images;International Journal of Imaging Systems and Technology;2023-05-18

2. Predicting Breast Cancer Leveraging Supervised Machine Learning Techniques;Computational and Mathematical Methods in Medicine;2022-08-16

3. A Survey on Various Medical Image Classification and Feature Recognition Techniques;2022 6th International Conference on Trends in Electronics and Informatics (ICOEI);2022-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3