Uncovering the Mechanism of Astragalus membranaceus in the Treatment of Diabetic Nephropathy Based on Network Pharmacology

Author:

Guo Ming-Fei1ORCID,Dai Ya-Ji2ORCID,Gao Jia-Rong3,Chen Pei-Jie1

Affiliation:

1. Department of Pharmacy, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, China

2. Department of Pharmacy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui 230041, China

3. Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China

Abstract

Background. Diabetic nephropathy (DN), characterized by hyperglycemia, hypertension, proteinuria, and edema, is a unique microvascular complication of diabetes. Traditional Chinese medicine (TCM) Astragalus membranaceus (AM) has been widely used for DN in China while the pharmacological mechanisms are still unclear. This work is aimed at undertaking a network pharmacology analysis to reveal the mechanism of the effects of AM in DN. Materials and Methods. In this study, chemical constituents of AM were obtained via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), and the potential targets of AM were identified using the Therapeutic Target Database (TTD). DisGeNET and GeneCards databases were used to collect DN-related target genes. DN-AM common target protein interaction network was established by using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to further explore the DN mechanism and therapeutic effect of AM. The network diagrams of the active component-action target and protein-protein interaction (PPI) networks were constructed using Cytoscape software. Results. A total of 16 active ingredients contained and 78 putative identified target genes were screened from AM, of which 42 overlapped with the targets of DN and were considered potential therapeutic targets. The analysis of the network results showed that the AM activity of component quercetin, formononetin, calycosin, 7-O-methylisomucronulatol, and quercetin have a good binding activity with top ten screened targets, such as VEGFA, TNF, IL-6, MAPK, CCL3, NOS3, PTGS2, IL-1β, JUN, and EGFR. GO and KEGG analyses revealed that these targets were associated with inflammatory response, angiogenesis, oxidative stress reaction, rheumatoid arthritis, and other biological process. Conclusions. This study demonstrated the multicomponent, multitarget, and multichannel characteristics of AM, which provided a novel approach for further research of the mechanism of AM in the treatment of DN.

Funder

State Administration of Traditional Chinese Medicine of the People's Republic of China

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3