The Modified Particle Swarm Optimization for a Special Case of the Assignment Problem: A Case Study in Chicken Transportation

Author:

Supattananon Naratip1ORCID,Akararungruangkul Raknoi1ORCID

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, KhonKaen University, KhonKaen 40000, Thailand

Abstract

This research aims at solving the special case of multistate assignment problem. The problem includes many special characteristics which are not normally included in the assignment problem. There are many types and conditions of vehicles included in the planning and different road conditions of traveling, which would have different effects on fuel consumption, which is the objective function of the study. The proposed problem is determined as a large and complicated problem making the optimization software unable to find an optimal solution within the proper time. Therefore, the researchers had developed a method for determining the optimal solution by using particle swarm optimization (PSO) in which the methods were developed for solving the proposed problem. This method is called the modified particle swarm optimization (modified PSO). The proposed method was tested with three groups of tested instances, i.e., small, medium, and large groups. The computational result shows that, in small-sized and medium-sized problems, the proposed method performed not significantly different from the optimization software, and in the large-sized problems, the modified PSO method gave 3.61% lower cost than the cost generated from best solution generated from optimization software within 72 hours and it gave 11.03% better solution than that of the best existing heuristics published so far (differential evolution algorithm).

Funder

Khon Kaen University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3