The Influence of Wheelchair Users on Movement in a Bottleneck and a Corridor

Author:

Geoerg Paul1ORCID,Schumann Jette2ORCID,Holl Stefan2,Hofmann Anja1

Affiliation:

1. Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany

2. Forschungszentrum Jülich GmbH, Jülich, Germany

Abstract

Emergency exits as bottlenecks in escape routes are important for designing traffic facilities. Particularly, the capacity estimation is a crucial performance criterion for assessment of pedestrians’ safety in built environments. For this reason, several studies were performed during the last decades which focus on the quantification of movement through corridors and bottlenecks. These studies were usually conducted with populations of homogeneous characteristics to reduce influencing variables and for reasons of practicability. Studies which consider heterogeneous characteristics in performance parameters are rarely available. In response and to reduce this lack of data a series of well-controlled large-scale movement studies considering pedestrians using different types of wheelchairs was carried out. As a result it is shown that the empirical relations ρ¯(v¯) and Js¯(ρ¯) are strongly affected by the presence of participants with visible disabilities (such as wheelchair users). We observed an adaption of the overall movement speeds to the movement speeds of participants using a wheelchair, even for low densities and free flow scenarios. Flow and movement speed are in a complex relation and do not depend on density only. In our studies, the concept of specific flow fits for the nondisabled subpopulation but it is not valid for scenario considering wheelchair users in the population.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3