Sandy Soil Improvement Using MICP-Based Urease Enzymatic Acceleration Method Monitored by Real-Time System

Author:

Iamchaturapatr Janjit1,Piriyakul Keeratikan1ORCID,Ketklin Thanate2,Di Emidio Gemmina3,Petcherdchoo Aruz4ORCID

Affiliation:

1. Center of Excellence in Structural Dynamics and Urban Management, Department of Civil and Environmental Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

2. Former Graduate Student in Construction Engineering Technology, Department of Civil and Environmental Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

3. Laboratory of Geotechnics, Department of Civil Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium

4. Department of Civil Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

Abstract

This paper aims at monitoring the improvement of sandy soil properties with biocementation through the microbially induced calcite precipitation (MICP) method with reaction accelerations by self-developed soybean urease enzymes. In this study, the concentration of calcium ions (Ca2+ ions as CaCl2) is varied at 50, 100, 250, and 500 mM to determine an optimum shear strength. The self-developed soybean urease enzymes of 20% by volume (v/v) are used to accelerate the MICP reaction to finish within 7 days. Based on real-time monitoring bender element system and direct shear tests, the optimum Ca2+ concentration is found as 250 mM. However, a detrimental effect occurs in case of high concentration of Ca2+ as CaCl2 (500 mM) because of solution acidification from high Cl− concentration. This condition lowers CaCO3 precipitation causing the reduction of biocementation process. At equivalent shear modulus, the biocementation time of MICP-based sand with acceleration by urease enzymes is about 10 times faster than that without. Using spectrophotometer and pH meter, the ammonification rate and the solution pH of biocemented sand with acceleration by urease enzymes for 3 days are found relatively higher than those without urease enzymes for 40 days. The analyses by scanning electron microscopy (SEM) and X-ray diffraction (XRD) confirm not only the occurrence of CaCO3 binding sand particles together but also the improvement of physical strengths of sandy soil samples with the MICP-based urease enzymatic acceleration method. These results introduce an option to accelerate biocemented sandy soil improvement.

Funder

King Mongkut's University of Technology North Bangkok

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3