Dynamical Invariant Applied on General Time-Dependent Three Coupled Nano-Optomechanical Oscillators

Author:

Hassoul Sara1,Menouar Salah1,Benseridi Hamid2,Choi Jeong Ryeol3ORCID

Affiliation:

1. Laboratory of Optoelectronics and Compounds (LOC), Department of Physics, Faculty of Science, University of Ferhat Abbas Setif 1, Setif 19000, Algeria

2. Laboratory of Applied Mathematics (LaMA), Department of Mathematics, Faculty of Science, University of Ferhat Abbas Setif 1, Setif 19000, Algeria

3. Department of Nanoengineering, Kyonggi University, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Republic of Korea

Abstract

A quadratic invariant operator for general time-dependent three coupled nano-optomechanical oscillators is investigated. We show that the invariant operator that we have established satisfies the Liouville-von Neumann equation and coincides with its classical counterpart. To diagonalize the invariant, we carry out a unitary transformation of it at first. From such a transformation, the quantal invariant operator reduces to an equal, but a simple one which corresponds to three coupled oscillators with time-dependent frequencies and unit masses. Finally, we diagonalize the matrix representation of the transformed invariant by using a unitary matrix. The diagonalized invariant is just the same as the Hamiltonian of three simple oscillators. Thanks to such a diagonalization, we can analyze various dynamical properties of the nano-optomechanical system. Quantum characteristics of the system are investigated as an example, by utilizing the diagonalized invariant. We derive not only the eigenfunctions of the invariant operator, but also the wave functions in the Fock state.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3