Gross Morphological Features of the Organ Surface Primo-Vascular System Revealed by Hemacolor Staining

Author:

Lim Chae Jeong1ORCID,Yoo Jong-Hyun2,Kim Yongbaek3,Lee So Yeong1,Ryu Pan Dong1ORCID

Affiliation:

1. Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea

2. Laboratory Animal Research Center, College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea

3. Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea

Abstract

The primo-vascular system (PVS), which consists of primo-vessels (PVs) and primo-nodes (PNs), is a novel thread-like structure identified in many animal species. Various observational methods have been used to clarify its anatomical properties. Here, we used Hemacolor staining to examine the gross morphology of organ-surface PVS in rats. We observed a sinus structure (20–50 μm) with a remarkably low cellularity within PNs and PVs and several lines of ductules (3–5 μm) filled with single cells or granules (~1 μm) in PV. Both sinuses and ductules were linearly aligned along the longitudinal axis of the PVS. Such morphology of the PVS was further confirmed by acridine orange staining. In PN slices, there was a honeycomb-like structure containing the granules with pentagonal lumens (~10 μm). Both PVs and PNs were densely filled with WBCs, RBCs, and putative mast cells (MCs), which were 90.3%, 5.9%, and 3.8% of the cell population, respectively. Granules in putative MCs showed spontaneous vibrating movements. In conclusion, the results show that Hemacolor, a simple and rapid staining system, can reveal the gross morphological features reported previously. Our findings may help to elucidate the structure and function of the PVS in normal and disease states in future studies.

Funder

National Research Foundation of Republic of Korea

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3