Picking Path Optimization of Agaricus bisporus Picking Robot

Author:

Hu Xiaomei1ORCID,Pan Zhaoren1ORCID,Lv Shunke1ORCID

Affiliation:

1. The Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China

Abstract

The design and application of the mushroom picking robot will greatly reduce the labor cost, and it has become one of the research hotspots in the world. Therefore, we independently developed an A. bisporus (a kind of mushroom) picking robot and introduced its functional principle in this paper. At the same time, in order to improve the picking efficiency of the picking robot, a picking path optimization algorithm based on TSP model is proposed. Firstly, based on the TSP model, a picking route model for A. bisporus was established to determine the storage location of each A. bisporus. Then, an improved simulated annealing (I-SA) search algorithm is proposed to find the optimal path sequence. By improving the path initialization module, path generation module, and temperature drop module, the I-SA search algorithm can optimize the picking path in a short time. Finally, in order to improve the stability and reduce the running time of the I-SA search algorithm, a parallel optimization method for global search (“rough exploration”) and local search (“precision exploration”) is proposed. Through simulation experiments, the I-SA search algorithm can search stable and excellent path solution in a relatively short time. Through field experiments on mushroom base, the efficiency of picking A. bisporus can be improved by 14% to 18%, which verifies the effectiveness of the I-SA search algorithm.

Funder

Agricultural Committee of Shanghai

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development, integration, and field evaluation of an autonomous Agaricus bisporus picking robot;Computers and Electronics in Agriculture;2024-05

2. Classification-design-optimization integrated picking robots: a review;Journal of Intelligent Manufacturing;2023-09-09

3. Design of a novel end-effector for robotic bud thinning of Agaricus bisporus mushrooms;Computers and Electronics in Agriculture;2023-07

4. Low-cost, accurate robotic harvesting system for existing mushroom farms;2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM);2023-06-28

5. Multimedia Motion of Picking Robot Based on Cooperative Relationship of Matching Gradient Algorithm;Advances in Multimedia;2021-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3