Image Compression for Wireless Sensor Network: A Model Segmentation-Based Compressive Autoencoder

Author:

Bao Xuecai12ORCID,Ye Chen12ORCID,Han Longzhe12ORCID,Xu Xiaohua3ORCID

Affiliation:

1. Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang Institute of Technology, 330099 Nanchang, Jiangxi, China

2. School of Information Engineering, Nanchang Institute of Technology, 330099 Nanchang, Jiangxi, China

3. Jiangxi Academy of Water Science and Engineering, 330029 Nanchang, Jiangxi, China

Abstract

Aiming at the problems of image quality, compression performance, and transmission efficiency of image compression in wireless sensor networks (WSN), a model segmentation-based compressive autoencoder (MS-CAE) is proposed. In the proposed algorithm, we first divide each image in the dataset into pixel blocks and design a novel deep image compression network with a compressive autoencoder to form a compressed feature map by encoding pixel blocks. Then, the reconstructed image is obtained by using the quantized coefficients of the quantizer and splicing the decoded feature maps in order. Finally, the deep network model is segmented into two parts: the encoding network and the decoding network. The weight parameters of the encoding network are deployed to the edge device for the compressed image in the sensor network. For high-quality reconstructed images, the weight parameters of the decoding network are deployed to the cloud system. Experimental results demonstrate that the proposed MS-CAE obtains a high signal-to-noise ratio (PSNR) for the details of the image, and the compression ratio at the same bit per pixel (bpp) is significantly higher than that of the compared image compression algorithms. It also indicates that the MS-CAE not only greatly relieves the pressure of the hardware system in sensor network but also effectively improves image transmission efficiency and solves the deployment problem of image monitoring in remote and energy-poor areas.

Funder

Major Science and Technology Projects in Jiangxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3