Support Vector Machine and Granular Computing Based Time Series Volatility Prediction

Author:

Yang Yuan1ORCID,Ma Xu1

Affiliation:

1. School of Mathematics and Computer Science, Ningxia Normal University, Ningxia, Guyuan 756000, China

Abstract

With the development of information technology, a large amount of time-series data is generated and stored in the field of economic management, and the potential and valuable knowledge and information in the data can be mined to support management and decision-making activities by using data mining algorithms. In this paper, three different time-series information granulation methods are proposed for time-series information granulation from both time axis and theoretical domain: time-series time-axis information granulation method based on fluctuation point and time-series time-axis information granulation method based on cloud model and fuzzy time-series prediction method based on theoretical domain information granulation. At the same time, the granulation idea of grain computing is introduced into time-series analysis, and the original high-dimensional time series is granulated into low-dimensional grain time series by information granulation of time series, and the constructed information grains can portray and reflect the structural characteristics of the original time-series data, to realize efficient dimensionality reduction and lay the foundation for the subsequent data mining work. Finally, the grains of the decision tree are analyzed, and different support vector machine classifiers corresponding to each grain are designed to construct a global multiclassification model.

Funder

Natural Science Foundation of Ningxia Province

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3