Mechanical Behavior of Asphalt Mastics Produced Using Waste Stone Sawdust

Author:

Al-Khateeb Ghazi G.1ORCID,Khedaywi Taisir S.1,Irfaeya Motaz F.2

Affiliation:

1. Department of Civil Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

2. Skills Co. for Engineering Services, Al-Khaleel, West Bank, State of Palestine

Abstract

This study intended to evaluate the use of waste stone sawdust filler with asphalt binders and compare the mechanical properties of the waste filler-asphalt mastic with those of the asphalt mastic produced using the typical limestone filler. The mastics were prepared at four filler-to-asphalt ratios by volume of asphalt binder: 0.05, 0.10, 0.20, and 0.30. A dynamic shear rheometer (DSR) strain-controlled frequency sweep test was used to evaluate the properties of the control asphalt binder and the mastics. The test used a constant strain of 10% and loading frequencies of 10, 5.6, 3.1, 1.78, 1.0, 0.56, 0.31, 0.178, and 0.1 Hz and was conducted at wide range of temperatures: 10, 20, 30, 40, 50, 60, and 70°C. The test measured the complex shear modulus (G) value and the phase angle for the binder and the mastics. The findings of this study showed that the stone sawdust filler demonstrated higher resistance to fatigue and rutting behavior than the limestone filler. However, the elastic behavior of the two asphalt mastics was nearly similar and increased with the increase in volume ratio. It was also found that the best-fit model described the relationship between the volume ratio and each of G/sinδ and Gcosδ, and the mastic-to-binder modulus ratio was the exponential model with high coefficient of determination (r2). The differences in the G value between the limestone filler and the stone sawdust filler were relatively insignificant particularly at low loading frequencies and high temperatures. Finally, the mastic-to-binder modulus ratio decreased with the increase in loading frequency.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3