Affiliation:
1. School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China
Abstract
Deep convolutional neural networks have been successfully applied to face detection recently. Despite making remarkable progress, most of the existing detection methods only localize each face using a bounding box, which cannot segment each face from the background image simultaneously. To overcome this drawback, we present a face detection and segmentation method based on improved Mask R-CNN, named G-Mask, which incorporates face detection and segmentation into one framework aiming to obtain more fine-grained information of face. Specifically, in this proposed method, ResNet-101 is utilized to extract features, RPN is used to generate RoIs, and RoIAlign faithfully preserves the exact spatial locations to generate binary mask through Fully Convolution Network (FCN). Furthermore, Generalized Intersection over Union (GIoU) is used as the bounding box loss function to improve the detection accuracy. Compared with Faster R-CNN, Mask R-CNN, and Multitask Cascade CNN, the proposed G-Mask method has achieved promising results on FDDB, AFW, and WIDER FACE benchmarks.
Funder
Innovation Team Project (Natural Science) of the Education Department of Guangdong Province
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献